"Если мне что-то надо, значит, это уже моё"©
Надо же, и теория Большого Взрыва упоминается, и имя Шелдон, хоть и не Купер.:cool:

The quarks which determine the quantum numbers of hadrons are called valence quarks; apart from these, any hadron may contain an indefinite number of virtual (or sea) quarks, antiquarks, and gluons which do not influence its quantum numbers.[11] There are two families of hadrons: baryons, with three valence quarks, and mesons, with a valence quark and an antiquark.[12] The most common baryons are the proton and the neutron, the building blocks of the atomic nucleus.[13] A great number of hadrons are known (see list of baryons and list of mesons), most of them differentiated by their quark content and the properties these constituent quarks confer. The existence of "exotic" hadrons with more valence quarks, such as tetraquarks (qqqq) and pentaquarks (qqqqq), has been conjectured[14] but not proven.[nb 2][14][15]

Elementary fermions are grouped into three generations, each comprising two leptons and two quarks. The first generation includes up and down quarks, the second charm and strange quarks, and the third top and bottom quarks. All searches for a fourth generation of quarks and other elementary fermions have failed,[16] and there is strong indirect evidence that no more than three generations exist.[nb 3][17] Particles in higher generations generally have greater mass and lesser stability, causing them to decay into lower-generation particles by means of weak interactions. Only first-generation (up and down) quarks occur commonly in nature. Heavier quarks can only be created in high-energy collisions (such as in those involving cosmic rays), and decay quickly; however, they are thought to have been present during the first fractions of a second after the Big Bang, when the universe was in an extremely hot and dense phase (the quark epoch). Studies of heavier quarks are conducted in artificially created conditions, such as in particle accelerators.[18]

читать дальше

@темы: i can everything, quantum physics, studies